Quasiexactly solvable 2×2 matrix equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi Exactly Solvable 2×2 Matrix Equations

We investigate the conditions under which systems of two differential eigenvalue equations are quasi exactly solvable. These systems reveal a rich set of algebraic structures. Some of them are explicitely described. An exemple of quasi exactly system is studied which provides a direct counterpart of the Lamé equation.

متن کامل

Solvable Matrix Models

We review some old and new methods of reduction of the number of degrees of freedom from ∼ N 2 to ∼ N in the multi-matrix integrals.

متن کامل

Solvable Sextic Equations

Criteria are given for determining whether an irreducible sextic equation with rational coefficients is algebraically solvable over the complex number field C.

متن کامل

New solvable Matrix Integrals

We generalize Harish-Chandra-Itzykson-Zuber and certain other integrals (Gross-Witten integral and integrals over complex matrices) using the notion of tau function of matrix argument. In this case one can reduce matrix integral to the integral over eigenvalues, which in turn is certain tau function. Soliton theory. KP hierarchy of integrable equations, which is the most popular example, consis...

متن کامل

Quasi - Exactly - Solvable Differential Equations

A general classification of linear differential and finite-difference operators possessing a finite-dimensional invariant subspace with a polynomial basis is given. The main result is that any operator with the above property must have a representation as a polynomial element of the universal enveloping algebra of the algebra of differential (difference) operators in finitedimensional represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 1994

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.530454